Math 221: LINEAR ALGEBRA

Chapter 2. Matrix Algebra
§2-2. Equations, Matrices, and Transformations

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on $01 / 31 / 2021$)

Vectors

Matrix Vector Multiplication

The Dot Product

Transformations

Rotations in \mathbb{R}^{2}

Vectors

Matrix Vector Multiplication

The Dot Product

Transformations

Rotations in \mathbb{R}^{2}

Vectors

Vectors

Definitions

A row matrix or column matrix is often called a vector, and such matrices are referred to as row vectors and column vectors, respectively. If \vec{x} is a row vector of size $1 \times n$, and \vec{y} is a column vector of size $m \times 1$, then we write

$$
\overrightarrow{\mathrm{x}}=\left[\begin{array}{llll}
\mathrm{x}_{1} & \mathrm{x}_{2} & \cdots & \mathrm{x}_{\mathrm{n}}
\end{array}\right] \quad \text { and } \quad \overrightarrow{\mathrm{y}}=\left[\begin{array}{c}
\mathrm{y}_{1} \\
\mathrm{y}_{2} \\
\vdots \\
\mathrm{y}_{\mathrm{m}}
\end{array}\right]
$$

Definition (Vector form of a system of linear equations)
Consider the system of linear equations

$$
\begin{array}{ccccccc}
a_{11} x_{1}+a_{12} x_{2}+\cdots & +\cdots & +a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1} & +a_{22} x_{2} & +\cdots & +a_{2 n} x_{n} & = & b_{2} \\
\vdots & & \vdots & & & & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots & & \vdots \\
a_{m n} x_{n} & =b_{m}
\end{array}
$$

Definition (Vector form of a system of linear equations)
Consider the system of linear equations

$\mathrm{a}_{11} \mathrm{X}_{1}$	+	$\mathrm{a}_{12} \mathrm{X}_{2}$	+	+	$\mathrm{a}_{1 \mathrm{n}} \mathrm{X}_{\mathrm{n}}$	$=$
$\mathrm{a}_{21} \mathrm{X}_{1}$	$+$	$\mathrm{a}_{22} \mathrm{X}_{2}$	+	$+$	$\mathrm{a}_{2 \mathrm{n}} \mathrm{X}_{\mathrm{n}}$	$=$
:		:			:	
$\mathrm{am}_{\mathrm{m} 1} \mathrm{X}_{1}$	+	$\mathrm{am}_{\mathrm{m} 2} \mathrm{X}_{2}$	+	+	$\mathrm{amn}_{\mathrm{mb}} \mathrm{X}_{\mathrm{n}}$	$=$

Such a system can be expressed in vector form or as a vector equation by using linear combinations of column vectors:

$$
x_{1}\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right]+x_{2}\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Problem

Express the following system of linear equations in vector form:

$$
\begin{aligned}
2 \mathrm{x}_{1}+4 \mathrm{x}_{2}-3 \mathrm{x}_{3} & =-6 \\
& -\mathrm{x}_{2}+5 \mathrm{x}_{3}
\end{aligned}=0
$$

Problem

Express the following system of linear equations in vector form:

$$
\begin{aligned}
& 2 \mathrm{x}_{1}+4 \mathrm{x}_{2}-3 \mathrm{x}_{3}=-6 \\
& \begin{aligned}
-\mathrm{x}_{2}+5 \mathrm{x}_{3} & =0 \\
\mathrm{x}_{1}+\mathrm{x}_{2}+4 \mathrm{x}_{3} & =1
\end{aligned}
\end{aligned}
$$

Solution

$$
\mathrm{x}_{1}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]+\mathrm{x}_{2}\left[\begin{array}{r}
4 \\
-1 \\
1
\end{array}\right]+\mathrm{x}_{3}\left[\begin{array}{r}
-3 \\
5 \\
4
\end{array}\right]=\left[\begin{array}{r}
-6 \\
0 \\
1
\end{array}\right]
$$

Vectors

Matrix Vector Multiplication

The Dot Product

Transformations

Rotations in \mathbb{R}^{2}

Matrix vector multiplication

Matrix vector multiplication

Definition

Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be an $\mathrm{m} \times \mathrm{n}$ matrix with columns $\overrightarrow{\mathrm{a}}_{1}, \overrightarrow{\mathrm{a}}_{2}, \ldots, \overrightarrow{\mathrm{a}}_{\mathrm{n}}$, written $\mathrm{A}=\left[\begin{array}{llll}\overrightarrow{\mathrm{a}}_{1} & \overrightarrow{\mathrm{a}}_{2} & \cdots & \overrightarrow{\mathrm{a}}_{\mathrm{n}}\end{array}\right]$, and let $\overrightarrow{\mathrm{x}}$ be an $\mathrm{n} \times 1$ column vector,

$$
\overrightarrow{\mathrm{x}}=\left[\begin{array}{c}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\vdots \\
\mathrm{x}_{\mathrm{n}}
\end{array}\right]
$$

Matrix vector multiplication

Definition

Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be an $\mathrm{m} \times \mathrm{n}$ matrix with columns $\overrightarrow{\mathrm{a}}_{1}, \overrightarrow{\mathrm{a}}_{2}, \ldots, \overrightarrow{\mathrm{a}}_{\mathrm{n}}$, written $\mathrm{A}=\left[\begin{array}{llll}\overrightarrow{\mathrm{a}}_{1} & \overrightarrow{\mathrm{a}}_{2} & \cdots & \overrightarrow{\mathrm{a}}_{\mathrm{n}}\end{array}\right]$, and let $\overrightarrow{\mathrm{x}}$ be an $\mathrm{n} \times 1$ column vector,

$$
\overrightarrow{\mathrm{x}}=\left[\begin{array}{c}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\vdots \\
\mathrm{x}_{\mathrm{n}}
\end{array}\right]
$$

Then the product of matrix A and (column) vector $\overrightarrow{\mathrm{x}}$ is the $\mathrm{m} \times 1$ column vector given by

$$
\left[\begin{array}{llll}
\vec{a}_{1} & \vec{a}_{2} & \cdots & \vec{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\cdots+x_{n} \vec{a}_{n}=\sum_{j=1}^{n} x_{j} \vec{a}_{j}
$$

that is, $A \vec{x}$ is a linear combination of the columns of A.

Problem

Compute the product $A \vec{x}$ for

$$
A=\left[\begin{array}{ll}
1 & 4 \\
5 & 0
\end{array}\right] \quad \text { and } \quad \vec{x}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Problem

Compute the product $A \vec{x}$ for

$$
A=\left[\begin{array}{ll}
1 & 4 \\
5 & 0
\end{array}\right] \quad \text { and } \quad \vec{x}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Solution

$$
\mathrm{A} \overrightarrow{\mathrm{x}}=\left[\begin{array}{ll}
1 & 4 \\
5 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=2\left[\begin{array}{l}
1 \\
5
\end{array}\right]+3\left[\begin{array}{l}
4 \\
0
\end{array}\right]=\left[\begin{array}{r}
2 \\
10
\end{array}\right]+\left[\begin{array}{r}
12 \\
0
\end{array}\right]=\left[\begin{array}{l}
14 \\
10
\end{array}\right]
$$

Problem

Compute $\mathrm{A} \overrightarrow{\mathrm{y}}$ for

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 2 & -1 \\
2 & -1 & 0 & 1 \\
3 & 1 & 3 & 1
\end{array}\right] \quad \text { and } \vec{y}=\left[\begin{array}{r}
2 \\
-1 \\
1 \\
4
\end{array}\right]
$$

Problem
Compute Ay for

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 2 & -1 \\
2 & -1 & 0 & 1 \\
3 & 1 & 3 & 1
\end{array}\right] \quad \text { and } \quad \vec{y}=\left[\begin{array}{r}
2 \\
-1 \\
1 \\
4
\end{array}\right]
$$

Solution

$$
A \vec{y}=2\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+(-1)\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right]+1\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right]+4\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
0 \\
9 \\
12
\end{array}\right]
$$

Definition (Matrix form of a system of linear equations)
Consider the system of linear equations

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\vdots \\
a_{\mathrm{m} 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

Such a system can be expressed in matrix form using matrix vector multiplication,

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Definition (Matrix form of a system of linear equations)
Consider the system of linear equations

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\vdots \\
a_{\mathrm{m} 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

Such a system can be expressed in matrix form using matrix vector multiplication,

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Thus a system of linear equations can be expressed as a matrix equation

$$
\mathrm{A} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{b}}
$$

where A is the coefficient matrix, \vec{b} is the constant matrix, and \vec{x} is the matrix of variables.

Problem

Express the following system of linear equations in matrix form.

$$
\begin{aligned}
2 \mathrm{x}_{1}+4 \mathrm{x}_{2}-3 \mathrm{x}_{3} & =-6 \\
& -\mathrm{x}_{2}+5 \mathrm{x}_{3}
\end{aligned}=0
$$

Problem

Express the following system of linear equations in matrix form.

$$
\begin{aligned}
2 \mathrm{x}_{1}+4 \mathrm{x}_{2}-3 \mathrm{x}_{3} & =-6 \\
-\mathrm{x}_{2}+5 \mathrm{x}_{3} & =0 \\
\mathrm{x}_{1}+\mathrm{x}_{2}+4 \mathrm{x}_{3} & =1
\end{aligned}
$$

Solution

$$
\left[\begin{array}{rrr}
2 & 4 & -3 \\
0 & -1 & 5 \\
1 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-6 \\
0 \\
1
\end{array}\right]
$$

Theorem

1. Every system of m linear equations in n variables can be written in the form $A \vec{x}=\vec{b}$ where A is the coefficient matrix, \vec{x} is the matrix of variables, and \vec{b} is the constant matrix.

Theorem (continued)
2. The system $A \vec{x}=\vec{b}$ is consistent (i.e., has at least one solution) if and only if \vec{b} is a linear combination of the columns of A.

Theorem (continued)
3. The vector $\vec{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ is a solution to the system $A \vec{x}=\vec{b}$ if and only
if $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ are a solution to the vector equation

$$
\mathrm{x}_{1} \overrightarrow{\mathrm{a}}_{1}+\mathrm{x}_{2} \overrightarrow{\mathrm{a}}_{2}+\cdots \mathrm{x}_{\mathrm{n}} \overrightarrow{\mathrm{a}}_{\mathrm{n}}=\overrightarrow{\mathrm{b}}
$$

where $\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}$ are the columns of A.

Problem

Let

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 2 & -1 \\
2 & -1 & 0 & 1 \\
3 & 1 & 3 & 1
\end{array}\right] \quad \text { and } \quad \vec{b}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Express $\overrightarrow{\mathrm{b}}$ as a linear combination of the columns $\overrightarrow{\mathrm{a}}_{1}, \overrightarrow{\mathrm{a}}_{2}, \vec{a}_{3}, \overrightarrow{\mathrm{a}}_{4}$ of A, or show that this is impossible.

Solution

Solve the system $A \vec{x}=\vec{b}$ where \vec{x} is a column vector with four entries.

Solution

Solve the system $A \vec{x}=\vec{b}$ where \vec{x} is a column vector with four entries. Do so by putting the augmented matrix $[\mathrm{A} \mid \overrightarrow{\mathrm{b}}]$ in reduced row-echelon form.

Solution

Solve the system $A \vec{x}=\vec{b}$ where \vec{x} is a column vector with four entries. Do so by putting the augmented matrix $[\mathrm{A} \mid \overrightarrow{\mathrm{b}}]$ in reduced row-echelon form.

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 2 & -1 & 1 \\
2 & -1 & 0 & 1 & 1 \\
3 & 1 & 3 & 1 & 1
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 1 & 1 / 7 \\
0 & 1 & 0 & 1 & -5 / 7 \\
0 & 0 & 1 & -1 & 3 / 7
\end{array}\right]
$$

Solution
Solve the system $A \vec{x}=\vec{b}$ where \vec{x} is a column vector with four entries. Do so by putting the augmented matrix $[\mathrm{A} \mid \overrightarrow{\mathrm{b}}]$ in reduced row-echelon form.

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 2 & -1 & 1 \\
2 & -1 & 0 & 1 & 1 \\
3 & 1 & 3 & 1 & 1
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 1 & 1 / 7 \\
0 & 1 & 0 & 1 & -5 / 7 \\
0 & 0 & 1 & -1 & 3 / 7
\end{array}\right]
$$

Since there are infinitely many solutions (x_{4} is assigned a parameter), choose any value for x_{4}.

Solution

Solve the system $A \vec{x}=\vec{b}$ where \vec{x} is a column vector with four entries. Do so by putting the augmented matrix $[\mathrm{A} \mid \overrightarrow{\mathrm{b}}]$ in reduced row-echelon form.

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 2 & -1 & 1 \\
2 & -1 & 0 & 1 & 1 \\
3 & 1 & 3 & 1 & 1
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 1 & 1 / 7 \\
0 & 1 & 0 & 1 & -5 / 7 \\
0 & 0 & 1 & -1 & 3 / 7
\end{array}\right]
$$

Since there are infinitely many solutions (x_{4} is assigned a parameter), choose any value for x_{4}. Choosing $\mathrm{x}_{4}=0$ (which is the simplest thing to do) gives us
$\overrightarrow{\mathrm{b}}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\frac{1}{7}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]-\frac{5}{7}\left[\begin{array}{r}0 \\ -1 \\ 1\end{array}\right]+\frac{3}{7}\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]=\frac{1}{7} \overrightarrow{\mathrm{a}}_{1}-\frac{5}{7} \overrightarrow{\mathrm{a}}_{2}+\frac{3}{7} \overrightarrow{\mathrm{a}}_{3}+0 \overrightarrow{\mathrm{a}}_{4}$.

Remark

The problem may ask to to find all possible linear combinations of the columns $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \vec{a}_{4}$ of A.

Remark

The problem may ask to to find all possible linear combinations of the columns $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \vec{a}_{4}$ of A.

This is equivalent to find all solutions to the corresponding system of linear equations:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{7}-s \\
-\frac{5}{7}-s \\
\frac{3}{7}+s \\
\mathrm{~s}
\end{array}\right]
$$

Remark

The problem may ask to to find all possible linear combinations of the columns $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \vec{a}_{4}$ of A.

This is equivalent to find all solutions to the corresponding system of linear equations:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{7}-s \\
-\frac{5}{7}-s \\
\frac{3}{7}+s \\
s
\end{array}\right]
$$

Hence, all possible linear combinations are:

$$
\overrightarrow{\mathrm{b}}=\left(\frac{1}{7}-\mathrm{s}\right)\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\left(\frac{5}{7}+\mathrm{s}\right)\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+\left(\frac{3}{7}+\mathrm{s}\right)\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right]+\mathrm{s}\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

Theorem

Let A and B be $\mathrm{m} \times \mathrm{n}$ matrices, and let $\overrightarrow{\mathrm{x}}$ and $\overrightarrow{\mathrm{y}}$ be n -vectors in \mathbb{R}^{n}. Then:

1. $A(\vec{x}+\vec{y})=A \vec{x}+A \vec{y}$.
2. $\mathrm{A}(\mathrm{a} \overrightarrow{\mathrm{x}})=\mathrm{a}(\mathrm{A} \overrightarrow{\mathrm{x}})=(\mathrm{aA}) \overrightarrow{\mathrm{x}}$ for all scalars a .
3. $(\mathrm{A}+\mathrm{B}) \overrightarrow{\mathrm{x}}=\mathrm{A} \overrightarrow{\mathrm{x}}+\mathrm{B} \overrightarrow{\mathrm{x}}$.

Theorem

Let A and B be $\mathrm{m} \times \mathrm{n}$ matrices, and let $\overrightarrow{\mathrm{x}}$ and $\overrightarrow{\mathrm{y}}$ be n -vectors in \mathbb{R}^{n}. Then:

1. $A(\vec{x}+\vec{y})=A \vec{x}+A \vec{y}$.
2. $\mathrm{A}(\mathrm{a} \overrightarrow{\mathrm{x}})=\mathrm{a}(\mathrm{A} \overrightarrow{\mathrm{x}})=(\mathrm{aA}) \overrightarrow{\mathrm{x}}$ for all scalars a.
3. $(A+B) \vec{x}=A \vec{x}+B \vec{x}$.

This provides a useful way to describe the solutions to a system $A \vec{x}=\vec{b}$.
Structure of solutions:

General solution $=$ Sol. to the Homog. Eq. + A Particular Solution.

$$
\mathrm{A} \overrightarrow{\mathrm{x}}=\mathrm{A}\left(\overrightarrow{\mathrm{x}}_{0}+\overrightarrow{\mathrm{x}}_{1}\right)=\underbrace{\mathrm{A} \overrightarrow{\mathrm{x}}_{0}}_{\overrightarrow{\mathrm{x}}_{0}: \text { homogeneous sol. }}+\overrightarrow{\mathrm{x}}_{1}: \text { particular sol. } \underbrace{\mathrm{A} \overrightarrow{\mathrm{x}}_{1}}=\overrightarrow{0}+\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{b}}
$$

Vectors

Matrix Vector Multiplication

The Dot Product

Transformations

Rotations in \mathbb{R}^{2}

The Dot Product

The Dot Product

Definition

If ($\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}$) and ($\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{n}}$) are two ordered n -tuples, their dot product is defined to be the number

$$
\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{a}_{2} \mathrm{~b}_{2}+\cdots+\mathrm{a}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}
$$

obtained by multiplying corresponding entries and adding the results.

The Dot Product

Definition

If ($\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}$) and ($\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{n}}$) are two ordered n -tuples, their dot product is defined to be the number

$$
\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{a}_{2} \mathrm{~b}_{2}+\cdots+\mathrm{a}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}
$$

obtained by multiplying corresponding entries and adding the results.

This give an alternative way to carry out the matrix-vector product $\mathrm{A} \overrightarrow{\mathrm{x}}$.

$$
\begin{gather*}
\text { A } \\
{\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]} \\
\mathrm{x}_{1}\left[\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right]+\mathrm{x}_{2}\left[\begin{array}{c}
a_{12} \\
a_{22} \\
a_{32}
\end{array}\right]+x_{3}\left[\begin{array}{l}
a_{13} \\
a_{23} \\
a_{33}
\end{array}\right]+x_{4}\left[\begin{array}{l}
a_{14} \\
a_{24} \\
a_{34}
\end{array}\right] \\
{\left[\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+a_{14} x_{4} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+a_{24} x_{4} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+a_{34} x_{4}
\end{array}\right]}
\end{gather*}
$$

(Alternative)

Problem

$$
\text { If } \mathrm{A}=\left[\begin{array}{rrrr}
1 & 0 & 2 & -1 \\
2 & -1 & 0 & 1 \\
3 & 1 & 3 & 1
\end{array}\right] \text { and } \overrightarrow{\mathrm{x}}=\left[\begin{array}{r}
2 \\
-1 \\
1 \\
4
\end{array}\right] \text {, compute } \mathrm{A} \overrightarrow{\mathrm{x}} .
$$

Problem
If $\mathrm{A}=\left[\begin{array}{rrrr}1 & 0 & 2 & -1 \\ 2 & -1 & 0 & 1 \\ 3 & 1 & 3 & 1\end{array}\right]$ and $\overrightarrow{\mathrm{x}}=\left[\begin{array}{r}2 \\ -1 \\ 1 \\ 4\end{array}\right]$, compute $\mathrm{A} \overrightarrow{\mathrm{x}}$.

Solution
The entries of $\mathrm{A} \overrightarrow{\mathrm{x}}$ are the dot products of the rows of A with $\overrightarrow{\mathrm{x}}$:

$$
\begin{aligned}
A \overrightarrow{\mathrm{x}} & =\left[\begin{array}{rrrr}
1 & 0 & 2 & -1 \\
2 & -1 & 0 & 1 \\
3 & 1 & 3 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
-1 \\
1 \\
4
\end{array}\right] \\
& =\left[\begin{array}{rlrl}
1 \cdot 2+ & 0(-1) & + & 2 \cdot 1 \\
2 \cdot 2+ & (-1)(-1) & + & 0 \cdot 1 \\
3 \cdot 2+ & 1(-1) & + & 3 \cdot 1
\end{array}+\begin{array}{l}
1 \cdot 4 \\
3 \cdot 2
\end{array}\right]=\left[\begin{array}{r}
0 \\
9 \\
12
\end{array}\right] .
\end{aligned}
$$

Of course, this agrees with the outcome of the previous example.

Definition (Identity Matrix)

For each $\mathrm{n}>2$, the identity matrix I_{n} is the $\mathrm{n} \times \mathrm{n}$ matrix with 1 's on the main diagonal (upper left to lower right), and zeros elsewhere.

Definition (Identity Matrix)
For each $\mathrm{n}>2$, the identity matrix I_{n} is the $\mathrm{n} \times \mathrm{n}$ matrix with 1 's on the main diagonal (upper left to lower right), and zeros elsewhere.

Example

The first few identity matrices are

$$
\mathrm{I}_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \mathrm{I}_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \mathrm{I}_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \ldots
$$

Problem

Show that $\mathrm{I}_{\mathrm{n}} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{x}}$ for each n -vector $\overrightarrow{\mathrm{x}}$ in $\mathbb{R}^{\mathrm{n}}, \mathrm{n} \geq 1$.

Problem

Show that $I_{n} \vec{x}=\vec{x}$ for each n-vector \vec{x} in $\mathbb{R}^{n}, n \geq 1$.

Solution
We verify the case $\mathrm{n}=4$. Given the 4 -vector $\overrightarrow{\mathrm{x}}=\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3} \\ \mathrm{x}_{4}\end{array}\right]$ the dot product rule gives

$$
I_{4} \vec{x}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+0+0+0 \\
0+x_{2}+0+0 \\
0+0+x_{3}+0 \\
0+0+0+x_{4}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\vec{x}
$$

In general, $\mathrm{I}_{\mathrm{n}} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{x}}$ because entry k of $\mathrm{I}_{\mathrm{n}} \overrightarrow{\mathrm{x}}$ is the dot product of row k of I_{n} with $\overrightarrow{\mathrm{x}}$, and row k of I_{n} has 1 in position k and zeros elsewhere.

Vectors

Matrix Vector Multiplication

The Dot Product

Transformations

Rotations in \mathbb{R}^{2}

Transformations

Transformations

Notation and Terminology

Notation and Terminology

- We have already used \mathbb{R} to denote the set of real numbers.

Notation and Terminology

- We have already used \mathbb{R} to denote the set of real numbers.
- We use \mathbb{R}^{2} to the denote the set of all column vectors of length two,

Notation and Terminology

- We have already used \mathbb{R} to denote the set of real numbers.
- We use \mathbb{R}^{2} to the denote the set of all column vectors of length two, and we use \mathbb{R}^{3} to the denote the set of all column vectors of length three

Notation and Terminology

- We have already used \mathbb{R} to denote the set of real numbers.
- We use \mathbb{R}^{2} to the denote the set of all column vectors of length two, and we use \mathbb{R}^{3} to the denote the set of all column vectors of length three (the length of a vector is the number of entries it contains).

Transformations

Notation and Terminology

- We have already used \mathbb{R} to denote the set of real numbers.
- We use \mathbb{R}^{2} to the denote the set of all column vectors of length two, and we use \mathbb{R}^{3} to the denote the set of all column vectors of length three (the length of a vector is the number of entries it contains).
- In general, we write \mathbb{R}^{n} for the set of all column vectors of length n .

Transformations

Notation and Terminology

- We have already used \mathbb{R} to denote the set of real numbers.
- We use \mathbb{R}^{2} to the denote the set of all column vectors of length two, and we use \mathbb{R}^{3} to the denote the set of all column vectors of length three (the length of a vector is the number of entries it contains).
- In general, we write \mathbb{R}^{n} for the set of all column vectors of length n .
\mathbb{R}^{2} and \mathbb{R}^{3}
Vectors in \mathbb{R}^{2} and \mathbb{R}^{3} have convenient geometric interpretations as position vectors of points in the 2-dimensional (Cartesian) plane and in 3-dimensional space, respectively.

Definition (Transformations)

A transformation is a function $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$, sometimes written $\mathbb{R}^{\mathrm{n}} \xrightarrow{\mathrm{T}} \mathbb{R}^{\mathrm{m}}$, and is called a transformation from \mathbb{R}^{n} to \mathbb{R}^{m}.

Definition (Transformations)

A transformation is a function $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$, sometimes written $\mathbb{R}^{\mathrm{n}} \xrightarrow{\mathrm{T}} \mathbb{R}^{\mathrm{m}}$, and is called a transformation from \mathbb{R}^{n} to \mathbb{R}^{m}. If $\mathrm{m}=\mathrm{n}$, then we say T is a transformation of \mathbb{R}^{n}.

Definition (Transformations)

A transformation is a function $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$, sometimes written $\mathbb{R}^{\mathrm{n}} \xrightarrow{\mathrm{T}} \mathbb{R}^{\mathrm{m}}$, and is called a transformation from \mathbb{R}^{n} to \mathbb{R}^{m}. If $\mathrm{m}=\mathrm{n}$, then we say T is a transformation of \mathbb{R}^{n}.

What do we mean by a function?

Definition (Transformations)
A transformation is a function $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$, sometimes written $\mathbb{R}^{\mathrm{n}} \xrightarrow{\mathrm{T}} \mathbb{R}^{\mathrm{m}}$, and is called a transformation from \mathbb{R}^{n} to \mathbb{R}^{m}. If $\mathrm{m}=\mathrm{n}$, then we say T is a transformation of \mathbb{R}^{n}.

What do we mean by a function?
Informally, a function $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ is a rule that, for each vector in \mathbb{R}^{n}, assigns exactly one vector of \mathbb{R}^{m}

We use the notation $\mathrm{T}(\overrightarrow{\mathrm{x}})$ to mean the transformation T applied to the vector $\overrightarrow{\mathrm{x}}$.

Definition (Transformations)
A transformation is a function $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$, sometimes written $\mathbb{R}^{\mathrm{n}} \xrightarrow{\mathrm{T}} \mathbb{R}^{\mathrm{m}}$, and is called a transformation from \mathbb{R}^{n} to \mathbb{R}^{m}. If $\mathrm{m}=\mathrm{n}$, then we say T is a transformation of \mathbb{R}^{n}.

What do we mean by a function?
Informally, a function $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ is a rule that, for each vector in \mathbb{R}^{n}, assigns exactly one vector of \mathbb{R}^{m}

We use the notation $\mathrm{T}(\overrightarrow{\mathrm{x}})$ to mean the transformation T applied to the vector $\overrightarrow{\mathrm{x}}$.

Definition

If T acts by matrix multiplication of a matrix A (such as the previous example), we call T a matrix transformation, and write $\mathrm{T}_{\mathrm{A}}(\overrightarrow{\mathrm{x}})=\mathrm{A} \overrightarrow{\mathrm{x}}$.

Definition (Equality of Transformations)

Suppose $S: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ and $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ are transformations. Then $\mathrm{S}=\mathrm{T}$ if and only if $\mathrm{S}(\overrightarrow{\mathrm{x}})=\mathrm{T}(\overrightarrow{\mathrm{x}})$ for every $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$.

Example (Specifying the action of a transformation)
$\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ defined by

$$
T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
a+b \\
b+c \\
a-c \\
c-b
\end{array}\right]
$$

is a transformation

Example (Specifying the action of a transformation)
$\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ defined by

$$
T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
a+b \\
b+c \\
a-c \\
c-b
\end{array}\right]
$$

is a transformation that transforms the vector $\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right]$ in \mathbb{R}^{3} into the vector

$$
\mathrm{T}\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right]=\left[\begin{array}{l}
1+4 \\
4+7 \\
1-7 \\
7-4
\end{array}\right]=\left[\begin{array}{r}
5 \\
11 \\
-6 \\
3
\end{array}\right]
$$

Example (Transformation by matrix multiplication)
Consider the matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 1 & 0\end{array}\right]$. By matrix multiplication, A
transforms vectors in \mathbb{R}^{3} into vectors in \mathbb{R}^{2}.

Example (Transformation by matrix multiplication)
Consider the matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 1 & 0\end{array}\right]$. By matrix multiplication, A
transforms vectors in \mathbb{R}^{3} into vectors in \mathbb{R}^{2}. Consider the vector $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$.

Example (Transformation by matrix multiplication)
Consider the matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 1 & 0\end{array}\right]$. By matrix multiplication, A
transforms vectors in \mathbb{R}^{3} into vectors in \mathbb{R}^{2}. Consider the vector $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$.
Transforming this vector by A looks like:

$$
\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{x}+2 \mathrm{y} \\
2 \mathrm{x}+\mathrm{y}
\end{array}\right]
$$

Example (Transformation by matrix multiplication)
Consider the matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 1 & 0\end{array}\right]$. By matrix multiplication, A
transforms vectors in \mathbb{R}^{3} into vectors in \mathbb{R}^{2}. Consider the vector $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$. Transforming this vector by A looks like:

$$
\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{x}+2 \mathrm{y} \\
2 \mathrm{x}+\mathrm{y}
\end{array}\right]
$$

For example:

$$
\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
5 \\
4
\end{array}\right]
$$

Vectors

Matrix Vector Multiplication

The Dot Product

Transformations

Rotations in \mathbb{R}^{2}

Rotations in \mathbb{R}^{2}

Rotations in \mathbb{R}^{2}

Definition

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix. The transformation $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ defined by

$$
T(\vec{x})=A \vec{x} \text { for each } \vec{x} \in \mathbb{R}^{n}
$$

is called the matrix transformation induced by A .

Rotations in \mathbb{R}^{2}

Definition

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix. The transformation $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ defined by

$$
T(\vec{x})=A \vec{x} \text { for each } \vec{x} \in \mathbb{R}^{n}
$$

is called the matrix transformation induced by A .

Definition

The transformation

$$
\mathrm{R}_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

denotes counterclockwise rotation about the origin through an angle of θ.

Example (Rotation through π)

We denote by

$$
\mathrm{R}_{\pi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of π.

Example (Rotation through π)

We denote by

$$
\mathrm{R}_{\pi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of π.

Example (Rotation through π)

We denote by

$$
\mathrm{R}_{\pi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of π.

Example (Rotation through π)

We denote by

$$
\mathrm{R}_{\pi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of π.

Example (Rotation through π)

We denote by

$$
\mathrm{R}_{\pi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of π.

We see that $\mathrm{R}_{\pi}\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]=\left[\begin{array}{l}-\mathrm{a} \\ -\mathrm{b}\end{array}\right]=$

Example (Rotation through π)

We denote by

$$
\mathrm{R}_{\pi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of π.

We see that $R_{\pi}\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]=\left[\begin{array}{l}-\mathrm{a} \\ -\mathrm{b}\end{array}\right]=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]$, so R_{π} is a matrix transformation.

Example (Rotation through $\pi / 2$)
We denote by

$$
\mathrm{R}_{\pi / 2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of $\pi / 2$.

Example (Rotation through $\pi / 2$)

We denote by

$$
\mathrm{R}_{\pi / 2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of $\pi / 2$.

Example (Rotation through $\pi / 2$)
We denote by

$$
\mathrm{R}_{\pi / 2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of $\pi / 2$.

Example (Rotation through $\pi / 2$)
We denote by

$$
\mathrm{R}_{\pi / 2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of $\pi / 2$.

Example (Rotation through $\pi / 2$)
We denote by

$$
\mathrm{R}_{\pi / 2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of $\pi / 2$.

We see that $\mathrm{R}_{\pi / 2}\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]=\left[\begin{array}{c}-\mathrm{b} \\ \mathrm{a}\end{array}\right]=$

Example (Rotation through $\pi / 2$)
We denote by

$$
\mathrm{R}_{\pi / 2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of $\pi / 2$.

We see that $\mathrm{R}_{\pi / 2}\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]=\left[\begin{array}{c}-\mathrm{b} \\ \mathrm{a}\end{array}\right]=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]$, so $\mathrm{R}_{\pi / 2}$ is a matrix transformation.

Remark

In general, the rotation (counterclockwise) about the origin for an angle θ is

$$
\mathrm{R}_{\theta}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

and

Remark

In general, the rotation (counterclockwise) about the origin for an angle θ is

$$
\mathrm{R}_{\theta}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
a^{\prime} \\
b^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
\mathrm{a} \cos (\theta)-\mathrm{b} \sin (\theta) \\
\mathrm{a} \sin (\theta)+\mathrm{b} \cos (\theta)
\end{array}\right]
$$

Remark

In general, the rotation (counterclockwise) about the origin for an angle θ is

$$
\mathrm{R}_{\theta}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

and

$$
\begin{gathered}
{\left[\begin{array}{l}
\mathrm{a}^{\prime} \\
\mathrm{b}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{a} \cos (\theta)-\mathrm{b} \sin (\theta) \\
\mathrm{a} \sin (\theta)+\mathrm{b} \cos (\theta)
\end{array}\right]} \\
\mathrm{R}_{\pi}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \quad \text { and } \quad \mathrm{R}_{\pi / 2}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
\end{gathered}
$$

